zZ. S

NS
L _|

o FIne-tune or PrOmpt or RAG
Using LLMs In business

—_— N

Sandeep Arora

www.trilyen.com



http://www.trilyen.com/

LLMSs in Business

LLMs are trained on internet scale data & have knowledge of the world. But these LLMs do not understand your
business or domain data.

Using LLMs to solve your own business problems can be challenging. Take for example a Law
Firm which wants to create a Knowledge extraction chatbot using its knowledge and data. This
can be hard despite available tools and frameworks. There is no one-stop shop for this. Here is

a framework on how to adapt LLMs to solve business problems you care about.

AN

* Understand language

—
* Have knowledge of the world
& Law Firm * Have reasoning capability

LLM

Foundation Model

International Law firm (multiple countries,
jurisdictions, business domains) wants to use
LLMs to prepare draft case documents,
compare previous cases, new employee Q&A



Framework to extend model knowledge and adapt to your task

LLM
~ = = How to unlock the full potential of LLMs
7’ to solve business problems
Track 1 P P
Use model as-is. /
Model is not modified. Il

Prompt Engineering
Few-shot
Zero-Shot

Chain-of-Thought

Used for simple use cases
like extractive Q+A or rapid
prototyping
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Framework to extend model knowledge and adapt to your task

LLM
~ = = How to unlock the full potential of LLMs — ~
/ i S
Track 1 , to solve business problems N
Use model as-is. / \
Model is not modified. / \\
Track 2

Model is modified

-

Prompt Engineering
Few-shot
Zero-Shot

Chain-of-Thought

RAG

(Retrieval Augmented Generation)
Add content from an external
vector database to your prompt

Fine Tuning
LoRA

QLoRA

- J

e RN
High Complexity
LLMOps

(training, deployment, monitoring, and
maintaining of models)



Framework to extend model knowledge and adapt to your task
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mracky Prompt Engineering

Prompt engineering is the process of carefully designing
and refining the input (the "prompt") given to an Al model
to achieve the desired output.

What is a Prompt? A prompt is a combination of
requirements, instructions, guardrails combined with data

to be acted upon by the LLM.

Anatomy of a Prompt

Style & Tone 4 [ Guardrails

Requirement ) [ Instructions

Output Format [ Examples




Types of Prompts

Zero-Shot One-Shot

The model predicts the answer given only a natural Is a technique where a model leverages a single example to
language prompt with no examples understand and execute a task

Use cases Use cases
Language Translation Automated content generation

Content moderation Document summarization
Sentiment analysis Email drafting

Few-Shot ,
Add few examples to the prompt. The model will adapt COT(Cha | n'Of'ThOUght)

results based with in-context learning Guides a model to solve complex problems by explicitly

prompting it to follow a step-by-step reasoning process.

Use cases
Customer support automation Use Cases
Content generation Mathematical problem solving
Data cleaning Data analysis

JSON extraction




Few-shot prompt

e o [ Style & Tone ]

You are a bank customer service bot.
Your task is to assess customer intent and categorize customer inquiry after into one of the

following predefined categories: [ Requirement ]
change pin

lost card
exchange rate
country support
charge dispute

If the customer inquiry doesn't fit into any of the above categories, classify it as: [ Instructions ]

customer service.
You will only respond with the predefined category. Do not provide explanations or notes. [ Output Format ]

### Here are some examples:

Inquiry: When will my credit card arrive? I'm going on a vacation and will not be able to check my
mails for few days in first week of May [ Examples ]

Category: card arrival
Inquiry: I am planning an international trip to Mexico. Does the card work there ?Category:

Country support Inquiry: | forget pin of my credit card. Canyou help me reset it 7

Category: Change pin
### For the below question coming from a customer what is the service category "My wallet got

stolen. it was in my bag at a conference. It had my credit card. What should i do™

< 8/8

©® ChatGPT
lost card [ Output Format ]




Chain-of-thought prompt

e You

Karen went to the grocery store. She saw mangoes were on Sale and she bought a dozen. She
already had 5 mangoes at home. Later that evening her father came to her home and gave her
half-a-dozen mangoes. How many mangoes does she have in total. Don't show any code. Lets
work this step-by-step

¢ 272

® ChatGPT

Sure, let's calculate how many mangoes Karen has now, step by step.

1. Karen initially had 5 mangoes.
2. She bought a dozen mangoes. A dozen equals 12.

3. Her father gave her half a dozen mangoes later, which equals 6.

Now, let's add all these together:

» Start with the 5 mangoes she already had.
* Addthe 12 mangoes she bought.
* Addthe 6 mangoes her father gave her.

That makes a total of 23 mangoes.



RAG (Retrieval Augmented Generation)

In simple words, RAG is a technique where you combine external content like (business knowledge/data) with a prompt before
sending it to the LLM. The LLM then acts & reasons on that to provide you with results. Essentially you are using the Al power of
a LLM on your custom knowledge/data.

@ IEERE

promt (user question or (1) A
task in natural language) P fom pt = Query Relevant Context Corporate data(unstructured, structured)

Docs, Excel, Data, PDF, html, etc.

'-‘[ Answer } ®

@ [ LLM }

[ Watch my video on RAG for more details and a demo ]




RAG Appllcatlon Architecture

[ ] | ] [080508 08]

= =] = Ingestion Process
= = =] ) I I s I [ 058,0508,.08 |
Docs, Excel, PDF, html, Chunks of Content Embeddings :

e e e ] e e LG

Ingest (Batch or Realtime)

4 \ * Convert query to embedding W Ej
(prompt) J * Retrieve chunks which match query

Question from vector database J Vector Database

O @

Answer J

(3
[ Prompt = Query + Relevant Context

© >~ Sy |

Query Process




Framework to extend model knowledge and adapt to your task
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wack2r FINE TUNING

Fine tuning is a method to train a foundation model with your own business data
or domain knowledge. During the training process, the weights are adjusted.
After fine-tuning, you can use the custom model it to build applications that are
specific to your organization and use cases.

Fine Tuning
(PEFT, LoRA, QLORA)

LLM

Foundation Model ¢ (Aircraft Engineering)
:  Domain specific data

Has NO knowledge about
Aeronautical Engineering

Aeronautical engineering is a field of
engineering that focuses on designing,
developing, testing and producing aircraft.

+ For example, BOEing wants to build an

Al Assistant which helps train new
employees on Aeronautical Engineering.

LLM

Custom Model

Now Has knowledge about
Aircraft Engineering

This is a new model. Weights have
been adjusted. Can be used to build
domain specific Al applications.



Challenges of Fine-Tuning

Fine-tuning a large foundation model changes the model's weights and can be computationally intensive,
expensive and time consuming, making it out of reach for many business.

6/ PEFT (parameter efficient fine-tuning)
Addresses the challenges of full fine-tuning

Parameter Efficient Fine-Tuning (PEFT) refers to a range of techniques used to adapt large pre-trained models to
specific tasks with minimal updates to the model parameters. The goal is to retain the benefits of the pre-trained
model while customizing it for a particular dataset or task without the need for extensive re-training, which can be
costly in terms of computational resources and time. Here we will talk about two such techniques:

1. LoRA (Low-Rank Adaptation)
2. QLoRA (Quantized Low-Rank Adaptation) are two such techniques.



LoRA: Low-Rank Adaptation

Is a type of efficient fine-tuning technique

Problem statement:

The default (fine-tuning: full weight) for LLMs tends to be
expensive, compute-intensive & slow. This becomes a major
obstacle for companies to adapt these models for their How does LoRA it solve it :

business use.
LoRA reduces the number of trainable parameters for

downstream tasks by freezing the weights of the model and
inserting a smaller number of new weights into the model. This

makes training with LoRA faster, memory-efficient and less
costly. All while maintaining the quality of the model outputs..



LoRA (Freeze weights & insert small number of trainable weights )

Preprocessor: "gemma_causal lm_preprocessor_1"

Tokenizer (type)

Vocab #

gemma_tokenizer (GemmaTokenizer)

256,000

Model: "gemma_causal_lm_1"

Layer (type) Ooutput Shape Param # | Connected to
padding mask (InputLayer) ( , ) e | -

token_ids (InputlLayer) ( , ) 8 | -

gemma_backbone ( , , 2048) 2,506,172,416 | padding mask[e][e],
(GemmaBackbone) token ids[@][@]
token _embedding ( , , 256000) 524,288,000 | gemma_backbone[@][@]
(ReversibleEmbedding)

Total params: 2,506,172,416 (4.67 GB)

Trainable params: 2,586,172,416 (4.67 GB)
Non-trainable params: © (©.80 B)

* Freeze weights

* |Insert small number of

trainable weights

Model: "gemma_causal_lm_1"

(Reversiblekmbedding)

Layer (type) Output Shape Param # | Connected to
padding mask (InputlLayer) ( , ) B | -

token ids (InputLayer) ( , ) B | -

gemma_backbone ( , » 2048) 2,5087,536,384 | padding mask[®][@],
(GemmaBackbone) token _ids[@][@]
token embedding ( , » 256000) 524,288,000 | gemma backbone[@][8]

Total params: 2,587,536,384 (4.67 GB)
Trainable params: 1 2682222 (2 20 MBY

Non-trainable param§: 2,506,172,416 (4.67 _




QLOoRA (Quantized Low-Rank Adaption)

Building on LoRA, QLoRA incorporates quantization into the adaptation process. It uses techniques like 4-bit quantization to further
reduce the memory and computational requirements. This quantization applies not just to the low-rank matrices but potentially
also to other parts of the model, making the storage and processing of model weights more efficient

Float 32
Sign Ex Mantissa
] Y R 0 O 0 T T A i i T
1 bit t 23 bits
Float 16
Sign xponent Mantissa
[ LT T T T T T Q]
1 bit t 10 bits
Float 8 E4AM3 Float 8 ESM2
Sign  Exp t Mantissa Sign «ponent Mantissa
[T [
1 bit } bit 3 bits 1 bit t 2 bits

Overview of Floating Point 8 (FP8) format. Source: Original content from sguggex

huggingface.co/blog/4bit-transformers-bitsandbytes



wrack 3): CUsStom Model
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